Danzer's problem, effective constructions of dense forests and digital sequences

نویسندگان

چکیده

A 1965 problem due to Ludwig Danzer asks whether there exists a set in Euclidean space with finite density intersecting any convex body of volume 1. recent approach this is concerned the construction dense forests and obtained by suitable weakening constraint. forest discrete point getting uniformly close long enough line segments. The distribution points then quantified terms visibility function. Another way weaken assumptions Danzer's relaxing In respect, new concept introduced paper, namely that an optical forest. An R d $\mathbb {R}^{d}$ optimal but not necessarily density. literature, best constructions sets are deterministic. goal paper provide deterministic which yield known results dimension ⩾ 2 $d \geqslant 2$ bounds, respectively. Namely, three main work: (1) bound which, furthermore, enjoys property being deterministic; (2) failing be only up logarithm (3) planar Peres-type (that is, from Peres) bound. This achieved constructing digital sequence satisfying strong dispersion properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Digital fingerprinting codes: problem statements, constructions, identification of traitors

We consider a general fingerprinting problem of digital data under which coalitions of users can alter or erase some bits in their copies in order to create an illegal copy. Each user is assigned a fingerprint which is a word in a fingerprinting code of size (the total number of users) and length . We present binary fingerprinting codes secure against sizecoalitions which enable the distributor...

متن کامل

Dense forests and Danzer sets

A set Y ⊆ R that intersects every convex set of volume 1 is called a Danzer set. It is not known whether there are Danzer sets in R with growth rate O(T ). We prove that natural candidates, such as discrete sets that arise from substitutions and from cut-and-project constructions, are not Danzer sets. For cut and project sets our proof relies on the dynamics of homogeneous flows. We consider a ...

متن کامل

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

Dense admissible sequences

A sequence of integers in an interval of length x is called admissible if for each prime there is a residue class modulo the prime which contains no elements of the sequence. The maximum number of elements in an admissible sequence in an interval of length x is denoted by %∗(x). Hensley and Richards showed that %∗(x) > π(x) for large enough x. We increase the known bounds on the set of x satisf...

متن کامل

Effective Theories of Dense and Very Dense Matter

The exploration of the phase diagram of dense baryonic matter is an area of intense theoretical and experimental activity. Baryonic systems, from dilute neutron matter at low density to superconducting quark matter at high density, exhibit an enormous variety of many-body effects. Despite its simplicity all these phenomena are ultimately described by the lagrangian of QCD. In practice it is usu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2022

ISSN: ['2041-7942', '0025-5793']

DOI: https://doi.org/10.1112/mtk.12153